日本大乳高潮视频在线观看-日本大骚b视频在线-日本大香伊一区二区三区-日本道二区免费v-日本道精品一区二区三区-日本道色综合久久影院

Your Position: Home > News > Industry News

Single Transformer Proteins May Play a Role in Cancer

2012/8/1??????view:

  A new study led by scientists at The Scripps Research Institute (TSRI) and St. Jude Children's Research Hospital shows how a protein involved in cancer twists and morphs into different structures. The research focuses on a protein named nucleophosmin (NPM1). The protein has many functions and may interfere with cells' normal tumor suppressing ability when mutated. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    "We're studying basic biophysics, but we believe the complexity and rules we uncover for the physics of protein disorder and folding could one day also be used for better designs of therapeutics," said Ashok Deniz, Ph.D., associate professor at TSRI.


    The study (“Asymmetric Modulation of Protein Order-Disorder Transitions by Phosphorylation and Partner Binding”), published in Angewandte Chemie, focuses  on the nucleophosmin (NPM1) protein, which has many functions and, when mutated, has been shown to interfere with cells' normal tumor suppressing ability. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    Previous research led by study collaborators Richard Kriwacki, Ph.D., and Diana Mitrea, Ph.D., at St. Jude had demonstrated that a section of NPM1, called the N-terminal domain (Npm-N), doesn't have a defined, folded structure. Instead, the protein morphs between two forms: a one-subunit disordered monomer and a five-subunit folded pentamer.


    Until now, the mechanism behind this transformation was unknown, but scientists believed this monomer-pentamer equilibrium could be important for the protein's location and functioning in the cell. To shed light on how this transformation occurred, Dr. Deniz and his colleagues used a combination of three techniques—single-molecule biophysics, fluorescence resonance energy transfer (FRET), and circular dichroism, which enabled them to study individual molecules and collections of molecules. Single-molecule methods are especially useful for such studies because they can uncover important information that remains hidden in conventional studies.


    The researchers found that the transformation can proceed through more than one pathway. In one pathway, the transformation begins when the cell sends signals to attach phosphoryl groups to NPM1. Such phosphorylation prompts the ordered pentamer to become disordered and likely causes NPM1 to shuttle outside the cell's nucleus. A meeting with a binding partner can mediate the reverse transformation to a pentamer.


    When NPM1 does become a pentamer again under these conditions, which likely causes it to move back to the nucleolus, it takes a different path instead of just retracing its earlier steps.


    Priya Banerjee, Ph.D., an American Heart Association-supported postdoctoral research associate at TSRI and the first author of the study, compared these complicated transitions to the morphing of a "Transformers" toy, where a robot can become a car and then a jet. "Phosphorylation and partner-binding are like different cellular switches driving these changes," said Dr. Banerjee.


    According to Dr. Banerjee, the new study also reveals many intermediate states between monomer and pentamer structures and that these states can be manipulated or "tuned" by changing conditions such as salt levels, phosphorylation, and partner binding, which may explain how cells regulate the protein's multiple functions. The researchers said future studies could shed more light on the biological functions of these different structures and how they might be used in future cancer therapies.


    The team added that combining the three techniques used in this study, plus a novel protein-labeling technique for single-molecule fluorescence, could be a useful strategy for studying other unstructured, "intrinsically disordered proteins" (IDPs), which are involved in a host of cellular functions, as well as neurodegenerative disease, heart disease, infectious disease, type 2 diabetes and other conditions.  

主站蜘蛛池模板: 一级毛片免费一级直接观看 | 九九精品九九 | 国产精品图片 | 中文字幕一区视频一线 | 精品国产呦系列在线看 | 91精品国产爱久久久久 | 青草娱乐极品免费视频 | 91久久精品日日躁夜夜躁欧美 | 四虎影视库国产精品一区 | 亚洲精品欧美日韩 | 亚洲综合日韩 | 日本高清视频www夜色资源网 | 天天干影视 | 国产高清一级视频在线观看 | 欧美日韩亚洲综合久久久 | 亚欧在线精品免费观看一区 | 欧美日韩中文亚洲v在线综合 | 精品热久久 | 免费午夜剧场 | 亚洲一区二区三区免费 | 久久99精品久久久久子伦 | 四虎综合九九色九九综合色 | 日本精品久久久中文字幕 | 免费观看一级毛片 | 在线观看欧美一区 | 日韩欧美一二区 | 国产精品香蕉成人网在线观看 | 黄色成人在线观看 | 国产亚洲男人的天堂在线观看 | 日韩久久一区二区三区 | 久久久久免费精品国产 | 99综合视频| 人人做人人爽久久久精品 | 一级毛片aa高清免费观看 | 婷婷激情亚洲 | 成人免费视频国产 | 久久永久影院免费 | 国产综合精品一区二区 | 亚洲精品区在线播放一区二区 | 日本免费不卡在线一区二区三区 | 高清人人天天夜夜曰狠狠狠狠 |